Winter School
Pulsed DNP and TSAR
• **Background and Rationale**
 DNP, EPR, Signal to Noise and bR
 DNP Enhancements of 100-400 in MAS Spectra @ 90 K
 DNP functions quite effectively in multiple classes of systems

• **CW DNP Mechanisms and Polarizing Agents**
 Solid Effect — \(\delta \sim \Delta << \omega_{0l} \)
 two spins, without e⁻ - ¹H hyperfine coupling
 Overhauser Effect — \(\delta \sim \Delta << \omega_{0l} \)
 two spins, with e⁻ - ¹H hyperfine coupling
 Cross Effect — \(\delta < \omega_{0l} < \Delta \)
 three spins, with e⁻ - e⁻ - ¹H dipole coupling

• **Time Domain DNP — NOVEL**
 NOVEL — lab frame-rotating frame cross-polarization

• **Instrumentation for DNP**
 Quadruple Resonance, LT MAS Probes
 Superconducting Sweep Coils
 Gyrotron Microwave Oscillators and Amplifiers

• Resolution and
Overhauser Effects in NMR

- **Overhauser effects** require mobile electrons or nuclei...
 Metals, 1D conductors, Na in NH₃, solution NOE’s

- *Overhauser DNP in insulators — new mechanism!*

- **Heteronuclear Overhauser effects** scale $\sim B_0^{-n}$
 Translational and rotational spectral densities
 Heteronuclear ($^1H-^{13}C$) NOE’s are attenuated >2.3 T
 Should not do ^{13}C protein NMR above $>60-100$ MHz

 *Overhauser DNP scales as $B_0^{+n}!$

- **Time Domain Experiments** are not field dependent
 INEPT for $^1H-^{13}C/^{15}N$ polarization transfers

 Pulsed DNP experiments are not field dependent!
Time Domain DNP

NOVEL - $\omega_{0I} = \omega_{1S}$

- **NOVEL matching condition --** $\omega_{0I} = \omega_{1S}$
 - $n=4096$
 - $\tau_{90x}=15\ \text{ns}$, $\tau_{\text{match}}=100\ \text{ns}$, $\tau_1=20\ \mu\text{s}$
- **Lab frame/rotating frame matching --** Z-polarization
 - Should **not** manifest a B_0 dependence!

- Use pulses on the e- to build up polarization

Henstra and Wenckebach, Mol. Physics (2008)

1H-13C/15N Cross Polarization

Hartmann-Hahn - $\omega_{1I} = \omega_{1S}$

- # 1H spins \geq # 13C spins
- Generates transverse magnetization
Time Domain DNP

NOVEL - $\omega_{0l} = \omega_{1S}$

- # e- spins < # 1H spins
- Substitute the B_0 field for B_{1S}
- Generates Z-polarization!

Davies ENDOR Spectrum
Benzophenone-Diphenylnitroxide

- Crystal structure and molecular structure
- 140 GHz Davies ENDOR spectrum

Time Domain DNP

NOVEL - $\omega_0 I = \omega_{1S}$

- Saturate 1H signals with a train of “m” pulses
- Spin lock the electrons “n” times using $\omega_0 I = \omega_{1S}$
- Detect the signal with a solid echo

Microwave Field Profiles

NOVEL - $\omega_0 I = \omega_{1S}$

- **NOVEL matching condition** -- $\omega_0 I = \omega_{1S}$
- **Lab frame/rotating frame matching** -- Z-polarization
- **Should not manifest a B_0 dependence**!

Henstra and Wenckebach, Mol. Physics (2008)

NOVEL - $\omega_{0I} = \omega_{1S}$

Diphenyl-NO in Benzophenone

- NOVEL matching condition -

- Lab frame/rotating frame matching -- Z-polarization

- Should not manifest a B_0 dependence!

NOVEL at 80 K

- A factor of ~3 improvement by deuteration
- Also works well at low temperature

NOVEL - $\omega_{0I} = \omega_{1S}$

Trityl DNP Juice

- NOVEL matching condition -- $\omega_{0I} = \omega_{1S}$
- Lab frame/rotating frame matching -- Z-polarization
- Should not manifest a B_0 dependence!

NOVEL - $\omega_0I = \omega_{1S}$

Trityl DNP Juice

- NOVEL matching condition -- $\omega_0I = \omega_{1S}$
- Lab frame/rotating frame matching -- Z-polarization
- Should not manifest a B_0 dependence!

Jennifer Mathies (2014)
NOVEL - $\omega_{0I} = \omega_{1S}$

Trityl DNP Juice

- NOVEL matching condition -- $\omega_{0I} = \omega_{1S}$
- Lab frame/rotating frame matching -- Z-polarization
- Should not manifest a B_0 dependence!

Jennifer Mathies (2014)
• Background and Rationale
 DNP, EPR, Signal to Noise and bR
 DNP Enhancements of 100-400 in MAS Spectra @ 90 K
 DNP functions quite effectively in multiple classes of systems

• CW DNP Mechanisms and Polarizing Agents
 Solid Effect — $\delta \sim \Delta << \omega_0$
 two spins, without $e^- - {^1H}$ hyperfine coupling
 Overhauser Effect — $\delta \sim \Delta << \omega_0$
 two spins, with $e^- - {^1H}$ hyperfine coupling
 Cross Effect — $\delta < \omega_0 < \Delta$
 three spins, with $e^- - e^- - {^1H}$ dipole coupling

• Time Domain DNP — NOVEL
 NOVEL — lab frame-rotating frame cross-polarization

• Instrumentation for DNP
 Quadruple Resonance, LT MAS Probes
 Superconducting Sweep Coils
 Gyrotron Microwave Oscillators and Amplifiers

• Resolution and
140 GHz Pulsed DNP Spectrometer
Gyro-Amplifier

- Gyroamplifier currently generating ~800 watts
- Quasioptical bridge for detection
- Time domain DNP -- no field dependence
- Experimental flexibility

Andy Smith and Bjoern Corzilius
Gyroamplifier, corrugated waveguide, NMR and EPR consoles

Quasi-optic network -- \(\lambda \sim 2.14 \text{ mm} \) (140 GHz) to 0.57 mm (527 GHz)

Ernst and coworkers -- time domain NMR!
Gyroamplifier generating ~400-1000 watts
Quasioptical bridge for detection
Time domain DNP -- no field dependence
ω₁S/2π~350-500 MHz
250 GHz Amplifier for Pulsed DNP

Solid State Source
30mW 248 GHz – 258 GHz

HV Modulator
Transmission Line

Gyrotron Amplifier

9.6 T Magnet
Electron Gun

Heterodyne Frequency Detector

Control System

Nanni, PRL 111,235101 (2013)
• Background and Rationale
 DNP, EPR, Signal to Noise and bR
 DNP Enhancements of 100-400 in MAS Spectra @ 90 K
 DNP functions quite effectively in multiple classes of systems

• CW DNP Mechanisms and Polarizing Agents
 Solid Effect — $\delta \sim \Delta \ll \omega_0$
 two spins, without e- - 1H hyperfine coupling
 Overhauser Effect — $\delta \sim \Delta \ll \omega_0$
 two spins, with e- - 1H hyperfine coupling
 Cross Effect — $\delta < \omega_0 < \Delta$
 three spins, with e- - e- - 1H dipole coupling

• Time Domain DNP — NOVEL
 NOVEL — lab frame-rotating frame cross-polarization

• Instrumentation for DNP
 Quadruple Resonance, LT MAS Probes
 Superconducting Sweep Coils
 Gyrotron Microwave Oscillators and Amplifiers
2nd Order Recoupling TSAR
Third Spin Assisted Recoupling Mechanism (TSAR)
Pulse sequences

PAINCP pulse sequence

\[
\begin{array}{c}
\pi/2 \\
^1H & CP & C.W. & TPPM \\
^13C & C.W. \\
^15N & CP & C.W.
\end{array}
\]

Lewandowski, De Paëpe, Griffin JACS (2007)

PAR pulse sequence

\[
\begin{array}{c}
\pi/2 \\
^1H & CP & C.W. & TPPM \\
^13C & C.W.
\end{array}
\]
PAR Experiment
SpinEv Optimization Map

- Appropriate choice of 13C and 1H rf leads to PAR recoupling!

$\rho_C = \omega_{1C}/\omega_r$
$\rho_H = \omega_{1H}/\omega_r$

rotary resonance
Hartmann-Hahn

$\omega_r/2\pi = 20 \text{ kHz}$
$\omega_0/2\pi = 750 \text{ MHz}$
Homonuclear TSAR Mechanism
Second order average Hamiltonian theory

ZQ flip-flop cross terms (2 x 3) lead to PAR transfer!
Auto cross terms arise from 2 x 2 and 3 x 3 and attenuate PAR

De Paëpe, Lewandowski, Loquet, Bockmann, Griffin JCP 129, 245101 (2008)
Proton Assisted Recoupling (PAR) [a.k.a. Third Spin Assisted Recoupling (TSAR)]

- PAR functions via second order cross terms -- not direct $^{13}\text{C}-^{13}\text{C}$ terms

\[
H_{\text{int}} = \omega_{N1N2}(3N_{1z}N_{2z} - N_{1*}N_{2}) + \omega_{N1H2}N_{1z}^2H_{z} + \omega_{HN2}2H_{2}N_{2z}
\]

- Polarization transfer driven by...

- One bond and sequential cross peaks observed in 20 ms of mixing

- PDSD requires 4 sec of mixing for an equivalent spectrum!

(Reif, et. al. 2000)

Lewandowski, De Paepe and Griffin JACS 129, 728-29 (2007); JACS 131, 5769–5776 (2009)
• Low power decoupling -- $\omega_1/2\pi=16$ kHz
• Two regions that satisfy the matching conditions
Proton Assisted Recoupling @ $\omega_r/2\pi=65$ kHz

$^{13}\text{C} - ^{13}\text{C}$ PAR -- $U(^{13}\text{C}, ^{15}\text{N})-G_{B1}$

- Long distance transfer in uniformly labeled protein
- Resolved $^{13}\text{C} - ^{13}\text{C}$ J-couplings -- $^{13}\text{C}=\text{O}$ to aliphatic
- Long distance contacts are observed in the aliphatic region
Methods yielding long distance restraints

13C–13C correlation spectra of [U–13C, 15N]–Crh protein

DARR / RAD

20 mg, 21 hours

CHHC

20 mg, 46 hours

13C–13C PAR

6 mg, 21.4 hours

De Paëpe et al. (2008)
Lewandowski et al. (2008)

DARR/RAD and CHHC spectra courtesy of Carole Gardiennet
High field (750/900 MHz) Protein Structure Determination

- Long distance transfer in **uniformly labeled protein**
- Superior to DARR, PDSD, etc.

Crh, 2 x 85 residues

- $\omega_r / 2\pi = 20$ kHz
- $\omega_{1c} \sim 50$ kHz
- $\omega_{1h} \sim 50$ kHz

Examples of interresidue contacts
Experimental: PAIN-CP vs. DCP at 750 MHz

[U-13C,15N]-f-MLF-OH, 20 kHz MAS

DCP:
3 ms
13C rf - 45 kHz
15N rf - 25 kHz
1H rf – 112.5 kHz

PAIN-CP:
4 ms
13C rf - 50 kHz
15N rf - 50 kHz
1H rf – 49 kHz

Relative 2D volumes for 1-bond cross-peaks

- PAIN-CP is more efficient!
Thank you for your attention!